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We consider a modification of the contact process incorporating higher-order reaction
terms. The original contact process exhibits a non-equilibrium phase transition be-
longing to the universality class of directed percolation. The incorporated higher-order
reaction terms lead to a non-trivial phase diagram. In particular, a line of continuous
phase transitions is separated by a tricritical point from a line of discontinuous phase
transitions. The corresponding tricritical scaling behavior is analyzed in detail, i.e., we
determine the critical exponents, various universal scaling functions as well as universal
amplitude combinations.

KEY WORDS: phase transition, tricritical behavior, directed percolation

PACS numbers: 05.70.Ln, 05.50.+q, 05.65.+b

1. INTRODUCTION

The concept of universality is well established for equilibrium critical phenomena
where a unifying framework exists. Compared to the equilibrium situation less is
known in case of non-equilibrium phase transitions. In particular a classification
scheme of the rich and often surprising variety of non-equilibrium phase transi-
tions is still lacking. Nevertheless, it is expected that analogous to equilibrium
each non-equilibrium universality class is characterized by a certain symmetry.
In this work we focus on stochastic processes which exhibit irreversible phase
transitions into absorbing and fluctuation free states (see(1– 4) for recent reviews).
In that case the universality determining symmetry is expressed in a correspond-
ing path integral formulation(2,5) which is associated to the considered stochastic
process. A well known example is the universality class of directed percolation
(DP). According to its robustness and ubiquity (including critical phenomena in
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physics, biology, as well as catalytic chemical reactions) directed percolation is
recognized as the paradigm of non-equilibrium phase transitions into absorbing
states. All non-equilibrium critical systems belong to the DP universality class
if the associated absorbing phase transition is described by a single component
order parameter and if the corresponding coarse grained system obeys the so-
called rapidity reversal symmetry (at least asymptotically). Unfortunately, this
symmetry is usally reflected on a coarse grained level only. Often, it is masked
on a microscopic level, e.g. it is not reflected in the dynamic rules of certain
lattice models. But the robustness of the DP universality class is expressed by
the conjecture of Janssen and Grassberger(6,7): short-range interacting systems,
exhibiting a continuous phase transition into an absorbing state, belong to the DP
universality class, if they are characterized by a one-component order parameter
and no additional symmetries and no quenched disorder. This robustness of the
DP universality class was recently demonstrated for five lattice models.(8) Despite
the different interaction details (such as different lattice structures, different up-
date schemes, different implementation schemes of the conjugated field, infinite
and finite numbers of absorbing states, models with and without multiple particle
occupation, etc.) all considered models are characterized by the same universal
scaling functions. Different universality classes than DP occur if the rapidity re-
versal is broken, e.g. by quenched disorder,(9–14) or additional symmetries such as
particle-hole symmetry (compact directed percolation(15,16)), particle conservation
(Manna universality class(17–19)), or parity conservation (for example branching
annihilating random walks with an even number of offsprings(20,21)).

Another universality class of absorbing phase transitions which is directly
related to DP is tricritical directed percolation (TDP). Analogous to the φ6-theory
in equilibrium critical phenomena the process of TDP incorporates higher-order
reaction terms than ordinary DP. Investigations of TDP in one-dimensional sys-
tems traces back to the seminal work of Grassberger.(7) Later, a field theoretical
analysis was performed by Ohtsuki and Keyes(22,23) (see also(5,24)). In that work
the authors discuss a one-component reaction-diffusion system that exhibits a tri-
critical point. This tricritical point separates continuous DP-like transitions from
first-order transitions. Using an ε-expansion several critical exponents were esti-
mated. Furthermore, the authors determine the upper critical dimension Dc = 3.
Compared to the established field theory of TDP less work was done numerically.
Several modifications of one-dimensional DP-lattice models are known which
yield multicritical behavior. But mostly a bicritical point is observed or the oc-
curring tricriticality is analyzed within a mean field level only (see e.g.(25–27)).
Surprisingly no systematic numerical investigations of tricritical-DP scaling be-
havior were performed so far.

In this work we analyze the tricritical contact process (TCP). This model is
a modification of the well-known contact process(28) which belongs to the uni-
versality class of directed percolation. The modification incorporates higher-order
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particle reactions, in particular a pair reaction scheme is added. It is worth men-
tioning that multicritical behavior does not necessarily appear by introducing addi-
tional higher-order reaction schemes. Multicritical behavior occurs if the resulting
lower-order reactions vanish on a coarse grained scale (see(23) and references
therein). In our case, the added pair reaction scheme leads to a non-trivial phase
diagram containing first- and second-order transitions as well as a tricritical point.
In D ≥ 2 the tricritical point separates a line of DP-like transitions from a line of
first-order transitions. In one-dimension, preliminary results do indicate that the
TCP does not exhibit a tricritical behavior. According to numerical simulations
and to a mean field cluster analysis(29) the first-order line and the tricritical point
collapse for D = 1 to the end point of the corresponding phase diagram (this
agrees with the more general argument that first-order transitions can not occur
in fluctuating one-dimensional systems due to the fact that the surface tension of
a given domain does not depend on its size). Therefore, we focus on the higher-
dimensional systems in the following. First, we survey the mean field behavior
of TDP and of the TCP which are valid for D > 3. Second, the two-dimensional
TCP is numerically examined. A scaling analysis of the DP-like transitions and of
the tricritical phase transition itself is presented. In particular, the full crossover
between both universality classes is recovered. The obtained values of univer-
sal quantities, such as the critical exponents, are compared to the results of the
corresponding field theories.(5,22,23)

Furthermore, the regime of first-order transitions is investigated. Discontin-
uous phase transitions are of their own interest (see for example(27,30–32)) because
most absorbing phase transitions are of second-order. As well known, discon-
tinuous transitions are usually characterized by hysteresis cycles caused by the
coexistence of two phases. A small but finite hysteresis can be observed in numer-
ical simulations of the TCP.

2. TRICRITICAL DIRECTED PERCOLATION

The process of directed percolation might be represented by the Langevin
equation (see e.g.(6))

λ−1∂tρa = τρa − gρ2
a − cρ3

a + �∇2ρa + h + η . (1)

The particle density on a mesoscopic (coarse grained) scale ρa = ρa(x, t)
corresponds to the order parameter of the non-equilibrium phase transition. The
control parameter of the transition τ describes the distance from the critical point
τ = 0. A finite positive particle density occurs above the transition point (τ > 0)
whereas the absorbing vacuum state (ρa = 0) is approached below the transition
point. The external field h is conjugated to the order parameter and is usually
implemented as a spontaneous particle creation process (see e.g.(33)). Further-
more, η = η(x, t) denotes the noise which accounts for fluctuations of the particle
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density. The noise η is a Gaussian random variable with zero mean and whose
correlator is given by(6)

〈η(x, t)η(x ′, t ′)〉 = λ−1κ ρa(x, t)δ(x − x ′)δ(t − t ′) . (2)

Notice, that the noise ensures that the systems is trapped in the absorbing state
ρa(x, t) = 0. Furthermore, higher-order terms such as ρa(x, t)3, ρa(x, t)4, . . . or
∇4ρa(x, t),∇6ρa(x, t), . . . are usually neglected because they are irrelevant under
renormalization group transformations as long as g > 0. Negative values of g give
rise to a first-order phase transition whereas g = 0 is associated with a tricritical
point.(22,23) In the latter cases the cubic term ρ3

a cannot be neglected.
In the following we present a simple but instructive mean field treatment.

Neglecting the noise term as well as spatial variations of the order parameter the
steady state behavior (∂tρa = 0) at zero field is given by

ρa = 0 ∨ ρa = − g

2c
±

√
τ

c
+

( g

2c

)2
. (3)

The first solution corresponds to the absorbing phase. According to a linear sta-
bility analysis it is stable for τ < 0 and unstable for (τ > 0). The solution with
the −sign yields unphysical and unstable results. The +sign solution describes
the order parameter as a function of the control parameter τ and of the additional
scaling field g. For g < 0, this solution is stable if τ > −g2/4c, otherwise it is
unstable. Assuming that the system is in the active phase (ρa > 0) the order pa-
rameter jumps at the borderline (τ = −g2/4c) from ρa = |g|/2c to zero. Thus the
absorbing and the active phase coexist between the spinodal τ = −g2/4c and the
line τ = 0 for g < 0.

The tricritical behavior is obtained for g = 0. The order parameter behaves
for τ > 0 as

ρa = (τ/c)βt (4)

with the tricritical order parameter exponent βt = 1/2. For g > 0, the active phase
is stable for τ > 0 and unstable otherwise. Close to the transition points (τ = 0)
the order parameter exhibits a directed percolation like behavior

ρa = − g

2c
+

√
τ

c
+

( g

2c

)2∣∣∣
τ� g2

4c

=
(

τ

g

)βDP

+ O(τ 2) (5)

with the exponent βDP = 1. The amplitude of this power-law diverges for g → 0,
signaling the crossover to the tricritical behavior.

Sufficiently away from the critical line τ = 0 we observe again the tricritical
behavior

ρa = − g

2c
+

√
τ

c
+

( g

2c

)2∣∣∣
τ
 g2

4c

=
√

τ

c
+ O(τ−1) (6)
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Fig. 1. The mean field phase diagrams of tricritical directed percolation (TDP). The left figure sketches
the phase diagram as a function of the coarse grained variables τ and g (see Eq. (1)). The right figure
shows the corresponding phase diagram as a function of the microscopic variables p and q, as defined
by a reaction scheme of the tricritical contact process (see text). The thick lines correspond to second-
order phase transitions (II.order) with βDP = 1. The bold circles mark the transition point of TDP with
βt = 1/2. The shadowed areas indicate the coexistence of the absorbing and the active phase. The thin
dashed lines illustrate the crossover to the tricritical behavior. In the right figure, two absorbing phases
appear for q = 1 (long dashed lines). These phases are the fully occupied lattice (stable for q > 0) and
the empty lattice (stable for q < 1/2).

for both g > 0 and g < 0. The crossover from the tricritical behavior takes place
at

τ = O(g2/4c) . (7)

The complete phase diagram is sketched in Fig. 1.
Within the active phase for g ≥ 0 the order parameter obeys the scaling form

ρa = λ−βt r̃tDP(λτ, gλφ, h = 0) (8)

for all positive λ and with the crossover exponent φ = 1/2. In particular, λ = g−1/φ

leads to the scaling form

ρa

gβt/φ
= r̃tDP(τg−1/φ, 1, 0) (9)

with

r̃tDP(x, 1, 0) ∼
{

xβ

DP if x � 1

xβt if x 
 1 .
(10)

In that way, the scaling plot ρa/gβt/φ vs. τg−1/φ reflects the crossover from DP to
TDP.

Now we consider the scaling behavior at non-zero conjugated field h. The
tricritical order parameter behavior at criticality (τ = 0 and g = 0) is given by

ρa = (h/c)βt/σt (11)
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with the exponent σt = 3/2. At the tricritical point the equation of state obeys the
scaling form

ρa = λ−βt r̃tDP(λτ, g = 0, hλσt ). (12)

Instead of the above equation the so-called Widom-Griffiths scaling form

h = λ−σt h̃tDP(λτ, ρaλ
βt , g = 0) (13)

is often used to describe the scaling behavior of the equation of state. Despite
metric factors the tricritical scaling form is given by

h̃tDP(x, y, g = 0) = −xy + y3. (14)

The corresponding scaling form of ordinary DP h̃DP(x, y) = −xy + y2 reflects
the different universality class.

For the sake of completeness we present the dynamical order parameter
behavior at tricriticality

ρa(τ = 0, g = 0, h = 0, t) = (
ρ−2

a,t=0 + 2ct
)−1/2

−−−−−−→
t → ∞ (2ct)−αt (15)

with αt = 1/2. Furthermore, the steady state value of the order parameter
(Eq. (4)) is approached from below as

ρa(τ, g = 0, h = 0, t) =
√

τ

c

[
1 − c0e−t/ξ‖ + O

(
e−2t/ξ‖

)]
. (16)

Here, the constant c0 contains the initial conditions and ξ‖ denotes the tem-
poral correlation length

ξ‖ = (2τ )−ν‖,t (17)

with ν‖,t = 1. Incorporating spatial variations of the order parameter the spatial
correlation length ξ⊥ can be derived via an Ornstein-Zernicke approach. The
resulting correlation length exponent ν⊥,t = 1/2 leads to the dynamical exponent
zt = ν‖,t/ν⊥,t = 2. Eventually we just mention that the tricritical exponent of
the order parameter fluctuations is given by γ ′

⊥,t = 1/2.(22) This value reflects a
qualitative difference between the mean field scaling behavior of DP and TDP. In
the latter case the fluctuations diverge at the transition point whereas they remain
finite (jump) in case of DP.(34,35) Another difference between both universality
classes concerns the value of the upper critical dimension, namely Dc = 4 for
ordinary DP(36,37) and Dc = 3 for TDP.(22,23)
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3. MODEL AND SIMULATIONS

We consider a modification of the contact process (CP). The CP was intro-
duced by Harris in order to model the spreading of epidemics.(28) It is a continuous-
time Markov process that is usually defined on a D-dimensional simple cubic
lattice. A lattice site may be empty (n = 0) or occupied (n = 1) by a particle and
the dynamics is characterized by spontaneously occurring processes, taking place
with certain transition rates. In numerical simulations the asynchronous update is
realized by a random sequential update scheme: A particle on a randomly selected
lattice site i is annihilated with rate one, whereas particle creation takes places on
an empty neighboring site with rate λN/2D, i.e.,

ni = 1
−→
1 ni = 0, (18)

ni = 0
−−−−−−→
λN/2D ni = 1, (19)

where N denotes the number of occupied neighbors of ni . Note that the rates are
defined as transition probabilities per time unit, i.e., they may be larger than one.
Thus, rescaling the time will change the transition rates. In simulations a discrete
time formulation of the contact process is performed. In that case a particle creation
takes place at a randomly chosen neighbor site with probability p = λ/(1 + λ)
whereas particle annihilation occurs with probability 1 − p = 1/(1 + λ).

In the language of reaction-diffusion models the contact process is described
by the reduced reaction scheme

A −→ 0, A −→ 2A (20)

which is controlled by the parameter p and where the quantity A represents a
particle. According to Ohtsuki and Keyes(22,23) higher-order reactions may lead to
a tricritical behavior as well as to a first-order behavior. Here, we additionally take
into consideration the pair reaction

2A −→ 3A. (21)

This reaction is controlled by a parameter q. Updating a given occupied lattice site
i, we first perform the pair reaction scheme with probability q (otherwise a usual
CP-update step is performed). If a randomly selected neighbor of i is occupied we
add a third particle at an empty (also randomly selected) neighbor of the pair. If
the lattice site i is isolated a usual update procedure of the CP is performed. The
detailed reaction scheme is listed in Table I.

It is essential for the following that within our implementation the annihilation
processes

A −→ 0, AA −→ 0A, AA → A0 (22)

take place with probabilities proportional to (1 − q). Thus these reactions are
suppressed for q ≈ 1 and are eventually forbidden for q = 1. In that case particle
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Table I. The reaction schemes and

the corresponding probabilities of the

considered tricritical contact process

Reaction Probability

A −→ 0 (1 − q)(1 − p)
0A −→ 00 q(1 − p)
0A −→ AA (1 − q)p
AA −→ 0A (1 − q)(1 − p)
0AA −→ AAA q

Note. For q = 0 the reaction scheme of the
original contact process is recovered (see
text).

annihilation occur via the reactions

A0 −→ 00, 0A −→ 00. (23)

This implies that annihilation processes are restricted to the domain boundaries
and do not occur insight of a domain. This behavior is reminiscent of compact
directed percolation(15,16,38) where the density of particles exhibits a discontinuous
behavior at the critical point.

The above scenario is also reflected by a corresponding mean field analysis.
Within the simplest mean field approach (single site approximation), the order
parameter is given by

∂tρa = τp,qρa − gp,qρ
2
a − cp,qρ

3
a (24)

with

τp,q = 2p − 1, gp,q = p − (2 − p)q, cp,q = q. (25)

The tricritical point (pt = 1/2, qt = 1/3) is determined by the conditions τ = 0
and g = 0. The line of second-order phase transitions (pc = 1/2 and q < 1/3)
is obtained from τ = 0 and g > 0. Within the first-order regime (g < 0) the
absorbing phase is stable for p < 1/2. The borderline of stability of the active
phase (pa > 0) is determined by τ = −g2/4c. The corresponding mean field
phase diagram is sketched in Fig. 1.

For q = 1 the corresponding mean field differential equation is given by

∂tρa = (2p − 1)ρa(1 − ρa) + ρ2
a (1 − ρa). (26)

Obviously, the steady state solutions are the empty lattice (ρa = 0 stable for p <

1/2) and the fully occupied lattice (ρa = 1 stable for p > 0). Note that both phases
coexist for p < 1/2. It is worth to compare the TCP for q = 1 to the process of
compact directed percolation which is described by the equation (see e.g.(5))

∂tρa = (2p − 1)ρa(1 − ρa). (27)
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Here, the fully occupied lattice is stable for p > 1/2 whereas the empty lattice
is stable for p < 1/2. Thus the process of compact directed percolation dis-
plays no phase coexistence in contrast to the tricritical contact process for q = 1.
Furthermore, Eq. (27) clearly express the particle-hole symmetry which is the
characteristic symmetry of the universality class of compact directed percolation.
In case of the TCP for q = 1, the particle-hole symmetry is broken by the pair
reaction processes contributing ρ2

a (1 − ρa) to the equation of motion.
Analyzing numerically or experimentally the scaling behavior of tricritical

systems it is crucial to determine the value of the tricritical point with high
accuracy. Thus a sensitive criterion is required to distinguish a first-order transition
from a second-order transition. At first glance, one is tempted to make use of
the order parameter jump at the first-order transition. At the tricritical point the
order parameter changes its behavior from a discontinuous jump to a continuous
power-law. But first, this behavior is affected close to the tricritical point by
crossover effects (see Fig. 1). Second, it is notoriously difficult to distinguish a
continuous phase transition with a small but finite value of the exponent βt from
a discontinuous jump. Especially this situation occurs in case of two-dimensional
TDP. An alternative way is to investigate instead of the order parameter the order
parameter fluctuations which diverge at the tricritical point but remain finite within
the first-order regime. But the fluctuation measurements suffer by crossover effects
in a similar way as the order parameter, i.e., a corresponding analysis yields
therefore no significant improvement.

In order to circumvent these problems we apply a method of analyzing that
is based on the scaling behavior of the order parameter close to the tricritical
point within the second-order transition regime. In particular, the scaling form of
the order parameter is used to recover the complete crossover from ordinary DP
to the TDP. We assume that the order parameter as well as the order parameter
fluctuations obey the scaling forms

ρa ∼ λ−βt r̃tDP(λτ, gλφ, h = 0) (28)

�ρa ∼ λγ ′
t d̃tDP(λτ, gλφ, h = 0) (29)

with the so far unknown tricritical exponents βt, γ ′
t , and φ. Asymptotically, the

scaling functions have to fulfill the power-laws

r̃tDP(x, 1, 0) ∼
{

xβDP if x � 1
xβt if x 
 1

(30)

d̃tDP(x, 1, 0) ∼
{

x−γ ′
DP if x � 1

x−γ ′
t if x 
 1

(31)

The values of the exponents βDP and γ ′
DP are known with sufficient accuracy (see

Table II and references therein). A serious problem is caused by the fact that
the scaling forms contain the coarse grained variables τ and g. In general, these
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Table II. The critical exponents and various universal amplitude combinations of tri-

critical (TDP) and ordinary directed percolation (DP) for various dimensions D

TDPD = 2 TDPD > 3 DPD = 2
(35,43,46,47) D = 3(35,43,48) DPD > 4

β 0.14 ± 0.02 1/2 0.5834 ± 0.0030 0.813 ± 0.009 1
ν⊥ 0.59 ± 0.08 1/2 0.7333 ± 0.0075 0.584 ± 0.005 1/2
ν‖ 1 1.2950 ± 0.0060 1.110 ± 0.010 1
σ 1.12 ± 0.05 3/2 2.1782 ± 0.0171 2.049 ± 0.026 2
γ ′ 0.93 ± 0.06 1/2 0.2998 ± 0.0162 0.126 ± 0.023 0
γ 1.00 ± 0.06 1 1.5948 ± 0.0184 1.237 ± 0.023 1
η⊥ 0.42 ± 0.24 1 1.5912 ± 0.0148 1.783 ± 0.016 2
Df 1.76 ± 0.05 2 1.2044 ± 0.0091 1.608 ± 0.019 2
β ′ 1 β = β ′ β = β ′ 1
δ 1 0.4505 ± 0.0010 0.732 ± 0.004 1
α 1/2 α = δ α = δ 1
θ 0 0.2295 ± 0.0010 0.114 ± 0.004 0
z 2 1.7660 ± 0.0016 1.901 ± 0.005 2
X(+1,0)
X(−1,0) 0.35 ± 0.05 1/2 0.25 ± 0.01 0.65 ± 0.03 1

U 0.84 ± 0.04 0.704 ± 0.013 0.61 ± 0.02 1/2

Note. The crossover exponent from tricritical to ordinary DP is given by φD=2 = 0.55 ± 0.03 and
φMF = 1/2.

variables depend on the (microscopic) parameters p and q in an unknown way. But
there exists a certain window of scaling where the coarse grained variables can be
replaced by the model parameters p and q. This will allow the determination of
the tricritical point as well as of the exponents βt and γ ′

t .
In the following the system is investigated within the active phase close to the

line of second-order phase transitions, i.e., g(p, q) > 0 and τ (p, q) close to zero.
Performing simulations, the order parameter is measured as a function of p for
fixed q. Sufficiently close to the transition line pc(q) the coarse grained variable
is approximated

τ (p, q) = τ (pc(q) + δp, q)

≈ τ (pc(q), q)︸ ︷︷ ︸
=0

+∂τ

∂p

∣∣∣
pc(q)

δp (32)

with δp = p − pc(q). Since the derivative is taken at the transition line pc(q) its
value depends on the parameter q. But close to the tricritical point we yield up to
higher-orders

τ (p, q) ≈ ∂τ

∂p

∣∣∣
pc(qt )

δp + O(δpδq) (33)

with δq = qt − q.
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A similar approximation can be obtained for g(p, q). In the vicinity of the
critical line we use the approximation

g(p, q) = g(pc(q) + δp, q)

≈ g(pc(q), q) + ∂g

∂p

∣∣∣
pc(q)

δp. (34)

Sufficiently close to the tricritical point we obtain

g(p, q) ≈ ∇g · t
∣∣∣

pt ,qt

δq

+∂g

∂p

∣∣∣
pt ,qt

δp + O(δpδq), (35)

with ∇g = (∂pg, ∂q g) and where the tangential vector along the phase boundary
is denoted by t = (∂pc(q)/∂q, 1). Assuming that ∇g · t and ∂g/∂p are of the same
order at the tricritical point, the coarse grained variable g(p, q) can be replaced in
the scaling functions Eqs. (30, 31) by the reduced model parameter δq if

δp � δq. (36)

This condition Eq. (36) is fulfilled if the simulations are performed in a way that
the distance to the phase boundary is smaller than the distance to the tricritical
point. Thus, the order parameter and its fluctuations obey for δq > 0 the scaling
forms

ρa ∼ λ−βt r̃q (λδp, δqλφ, h = 0), (37)

�ρa ∼ λγ ′
t d̃q (λδp, δqλφ, h = 0) (38)

if the critical point pc(q) is approached along q = const paths (as indicated by
the index q). The above scaling forms are not valid if ∇g ⊥ t or if the derivative
∂τ/∂p vanishes at the tricritical point. In the latter case higher-orders (O(δp2))
are required to describe the scaling behavior.

In the next section we describe the analysis of the simulation data. In particu-
lar, we have measured the averaged density of active sites ρa(p, q, h) = 〈L−D Na〉,
i.e., the order parameter as a function of p and q and of the conjugated field h.
Numerically obtained order parameter curves for q = 0 and for different values
of the conjugated field are plotted in Fig. 2. The conjugated field is implemented
via a generation of particles (0 −→ A with probability h). It results in a rounding
of the zero field curves and the order parameter behaves smoothly as a function
of the control parameter for finite field values. For h −→ 0 we recover the non-
analytical order parameter behavior. Additionally to the order parameter, we inves-
tigate the order parameter fluctuations �ρa(p, g, h) = L D(〈ρ2

a 〉 − 〈ρa〉2) and the
susceptibility χ (p, q, h) = ∂ρa/∂h. The susceptibility is obtained by performing
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Fig. 2. The order parameter ρa of the two-dimensional contact process (CP) as a function of the control
parameter p. The data are obtained from simulations on a simple cubic lattices of linear size L for
various field values (from 10−6 to h = 10−5). For non-zero field ρa exhibits an analytical behavior
(lines). For zero field (symbols) the order parameter vanishes at the transition point p = 0.62246(39).

the numerical derivative of the order parameter ρa with respect to the conjugated
field h.

4. SECOND-ORDER PHASE TRANSITION:

DIRECTED PERCOLATION BEHAVIOR

According to the above analysis we have simulated the tricritical contact
process (TCP) and have measured ρa as a function of p, keeping q fixed. Order
parameter curves for various q-value are shown in Fig. 3. According to Eq. (37)
these different curves collapse onto a single curve if the rescaled order parameter
ρaδq−βt/φ is plotted as a function of the rescaled control parameter δpδq−1/φ .
Therefore, we vary the parameters βt, φ as well as qt until a data collapse is
obtained. Convincing results are obtained for βt = 0.14 ± 0.02, φ = 0.55 ± 0.03
and qt = 0.9055 ± 0.0020. A corresponding scaling plot is shown in Fig. 4. The
data are obtained from simulations for 16 different values of q ranging from
q = 0.55 up to q = 0.904. Typical distances to the critical line are of the order
of O(δp) = 10−4. On the other hand the minimal distance δq to the tricritical
point along the q-axis is larger than 0.0015. In, that way, the condition Eq. (36) is
fulfilled, justifying the use of the scaling forms.

Since the entire crossover region covered several decades it could be difficult
to observe small but systematic differences between the scaling functions of both
models. It its therefore instructive to examine the crossover via the so-called
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Fig. 3. The order parameter ρa of the tricritical contact process (TCP) as a function of the control
parameter p for various values of q ∈ {0, 0.1, 0.2, 0.3, . . . , 0.9} (from right to left). The dashed line
corresponds to the pure contact process (q = 0). The data are obtained from simulations on simple
cubic lattices of linear size L = 64, 128, . . . , 512.

effective exponent

βeff = ∂

∂ ln x
ln r̃q(x, 1, 0). (39)

The corresponding data are shown in Fig. 5. The excellent data collapse of βeff over
more than 6 decades reflects the accuracy of the determination of the tricritical
point.

Fig. 4. The crossover scaling function of the order parameter at zero field. The dashed lines correspond
to the asymptotic behaviors, i.e., to the ordinary DP and to the tricritical DP behavior (see Eq. (30)).
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Fig. 5. The effective exponent βeff of the order parameter. Both asymptotic scaling regimes (βt and
βDP) as well as the crossover regime are clearly recovered.

A similar crossover scaling analysis can be performed for the order parameter
fluctuations. In that case, we use the above determined values of βt , qt and vary the
value of the fluctuation exponent γ ′

t until a data collapse of the different q-curves
occurs. Figure 6 shows the corresponding data collapse as well as the effective
exponent

γ ′
eff = ∂

∂ ln x
ln d̃q (x, 1, 0). (40)

Fig. 6. The crossover scaling function of the order parameter fluctuations at zero field. The dashed
lines correspond to the asymptotic behaviors, i.e., to the ordinary DP and to the tricritical DP behavior
(see Eq. (31)). The inset displays the corresponding effective exponent γ ′

eff .
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Although the data of the effective exponent are suffering from statistical fluctu-
ations both asymptotic scaling regimes as well as the crossover regime can be
identified. Worth mentioning, the crossover scaling function exhibits a so-called
non-monotonic crossover.(40) Unfortunately, the statistical scattering of the effec-
tive exponent data masks the non-monotonic behavior from γ ′

t = 0.93 ± 0.06 to
γ ′

DP.
In summary, the crossover scaling analysis allows the determination of the

tricritical value qt with high accuracy. Furthermore, the effective exponents βeff

and γ ′
eff reflect the full crossover from tricritical DP to ordinary DP which spans

more than 6 decades.

5. SECOND-ORDER PHASE TRANSITION: TRICRITICAL BEHAVIOR

In the previous section we have determined the tricritical value qt as well as
the critical line q(pc) of the directed percolation like phase transitions. This yield a
first glance of the phase diagram which is presented in Fig. 7. We now investigate
the tricritical scaling behavior in detail. Therefore, we consider first the order
parameter at zero field in the vicinity of the tricritical point. Second a conjugated
field is applied which allows the determination of various universal quantities such
as tricritical exponents, scaling functions as well as amplitude combinations.

In the following analysis, the tricritical point is approached in three different
ways and the order parameter is determined at zero field (see Fig. 7). First, ρa

is examined within the active phase as a function of p at the tricritical value

Fig. 7. The phase diagram of the two-dimensional modified contact process. The solid line marks
continuous phase transitions which belong to the universality class of directed percolation. The dashed
line corresponds to first-order phase transitions and the bold circle indicates the tricritical point.
The small circles in the right figure show where the transitions points are determined numerically.
Furthermore, the tricritical point is approached in the simulations along three different ways illustrated
by the three arrows.
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q = 0.9055. This yields the estimate

pt = pc(qt = 0.9055) = 0.29931 ± 0.00003. (41)

Second, the order parameter is measured for p = 0.29931 as a function of q. From
this analysis we obtain

qc(pt = 0.29931) = 0.90552 ± 0.00005 (42)

which agrees with the above determined value qt = 0.9055 ± 0.0020. To check
these estimates the critical point is approached along a third path which is (more or
less) perpendicular to the phase boundary. As well known the leading order of the
scaling behavior, i.e., the critical exponents, do not depend on the way the critical
point is approached. But the prefactors of the corresponding power-laws and the
corrections to the leading scaling order are affected by the different directions.
Thus the scaling behavior of the order parameter obeys asymptotically

ρa ∼ (apδp)βt for q = qt (43)

ρa ∼ (aqδq)βt for p = pt (44)

ρa ∼ (a⊥δp)βt along the perpendicular path. (45)

Plotting the corresponding data accordingly (e.g. ρa as a function of (apδp)βt ) the
three different curves collapse asymptotically to the leading tricritical behavior
if the so-called non-universal metric factors ap, aq , a⊥ are chosen appropriately.
The leading tricritical behavior corresponds in that analysis to a straight line with
slope one. As can be clearly seen in Fig. 8 all three curves approach the tricritical
scaling behavior asymptotically, confirming the accuracy of the determination
of the tricritical point and of the order parameter exponent βt. Furthermore, the
corrections to scaling, i.e., the deviations to the asymptotical power-law depend
strongly on the way the tricritical point is approached. Surprisingly, the smallest
corrections occurs along the path p = const and not as usually expected along the
way which is perpendicular to the phase boundary.

So far we have considered the order parameter at zero field in the vicinity of
the tricritical point. Applying an external field which is conjugated to the order
parameter, it is possible to investigate the scaling behavior of the tricritical equation
of state. Again, the conjugated field is implemented via a generation of particles
(0 −→ A with probability h). Sufficiently close to the tricritical point (g = 0) the
order parameter obeys the scaling form

ρa(τp,q , gp,q , h) ∼ λβt r̃ (λτp,q , gλφ, hλσt )

∣∣∣∣∣
g=0

= λ−βt r̃ (λτp,q , 0, hλσt ). (46)
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Fig. 8. The order parameter behavior of the tricritical contact process (TCP). The tricritical point is
approached along three different ways indicated by the three different symbols. All three curves tend
asymptotically to the function f (x) = x (the dashed line corresponds to the pure tricritical power-law
behavior) if ρa is plotted as a function of (apδp)βt , (aqδq)βt , and (a⊥δp)βt , respectively. But as can be
seen the corrections to scaling depend on the scaling direction.

Here, τp,q describes the distance to the tricritical point within the p–q–plane. All
non-universal system dependent features (such as the lattice structure or the way
the tricritical point is approached, etc.) can be absorbed in two metric factors apath

and ah . Once the non-universal metric factors are chosen in a specific way, the
scaling function R̃ (in contrast to r̃ ) is the same for all systems belonging to the
universality class of directed percolation. Thus the universal scaling behavior is
described by the ansatz

ρa(τp,q , 0, h) ∼ λ−βt R̃(λapathτpath, 0, ahhλσt ) (47)

yielding for ahhλσt = 1

ρa(τp,q , 0, h) ∼ (ahh)−βt/σt R̃(apathτpath(ahh)1/σt , 0, 1). (48)

Throughout this work we use the conditions R̃(1, 0, 0) = R̃(0, 0, 1) = 1 to specify
the metric factors which can be obtained from the amplitudes of the corresponding
power-laws (see e.g. Eqs. (43)–(45)).

In order to determine the universal scaling form of the equation of state we
have measured the field dependence of the order parameter. Again the tricritical
point is crossed along three different paths in the p–q–plane. Along each path, ρa .
is determined as a function of the distance to the tricritical point for at least
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Fig. 9. The order parameter ρa of the two-dimensional tricritical contact process (TCP) close to the
tricritical point. The tricritical point is crossed perpendicular to the phase boundary (see Fig. 1). The
order parameter is plotted as a function of the control parameter r. The zero field data (circles) are
obtained from simulations on a simple cubic lattices of linear size L = 64, 128, 256, 512. The solid
curves correspond to the non-zero field behavior (from h = 210−3 to h = 310−5).

four different field values. The results are plotted for the perpendicular path
in Fig. 9. According to the scaling form Eq. (48) the rescaled order parameter
is plotted as a function of the rescaled distances to the tricritical point. In our
analysis we have varied the field exponent σt until a data collapse is obtained.
Convincing results are obtained for σt = 1.20 ± 0.05 and are shown in Fig. 10.
Since data of different scaling directions are considered the presented data collapse
is an impressive demonstration of the universality class of TDP. Furthermore, the
tricritical universal scaling function differs significantly from the corresponding
scaling function of ordinary DP, reflecting the different universality classes.

Additionally to the order parameter behavior we have investigated the order
parameter fluctuations �ρa as well as the order parameter susceptibility χ . The
scaling behavior of both quantities is described by(8)

a��ρa(τp,q , 0, h) ∼ λγ ′
t D̃(λapathτpath, 0, ahhλσt ), (49)

aχχ (τp,q , 0, h) ∼ λγt X̃(λapathτpath, 0, ahhλσt ). (50)

Setting D̃(0, 0, 1) = 1 the non-universal metric factor a� is specified. Taking into
account that the susceptibility is defined as the derivative of the order parameter
with respect to the conjugated field we find aχ = a−1

h ,

X̃(x, 0, y) = ∂y R̃(x, 0, y), (51)
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Fig. 10. The universal scaling function R̃(x, 0, 1) of the universality class of TDP. For all three scaling
directions (only the data within the scaling regime are plotted) at least four different curves are plotted
corresponding to four different field values. The circle marks the condition R̃(0, 0, 1) = 1. The dashed
line corresponds to the universal scaling function of ordinary DP (taken from(8)).

X̃(0, 0, 1) = βt

σt
, (52)

γt = σt − βt. (53)

The latter equation corresponds to the Widom scaling law in equilibrium. Further-
more, Eq. (52) offers a useful consistency check of the numerical analysis.

The universal scaling functions of the order parameter fluctuations and the
order parameter susceptibility are shown in Figs. 11 and 12, respectively. The
susceptibility is obtained by performing the numerical derivative of the order
parameter with respect to the conjugated field. Both scaling functions exhibit
a maximum signaling the divergence of �ρa and χ at the tricritical point. The
susceptibility data fulfill Eq. (52), reflecting the accuracy of the performed analysis.
In both cases, the obtained universal scaling functions differ significantly from the
corresponding scaling functions of ordinary DP.

Additionally to the critical exponents and universal scaling functions it is
useful to investigate universal amplitude combinations. An often considered am-
plitude combination is related to the susceptibility behavior below and above the
transition. For e.g. q = const the susceptibility diverges as

χ (δp > 0, g = 0, h = 0) ∼ aχ,+δp−γt , (54)
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Fig. 11. The universal scaling function D̃(x, 0, 1) of the universality class of tricritical directed
percolation. For all three scaling directions (only the data within the scaling regime are plotted) the
scaling plot contains at least four different curves corresponding to four different field values. The
circle marks the condition D̃(0, 0, 1) = 1.

χ (δp < 0, g = 0, h = 0) ∼ aχ,−(−δp)−γt , (55)

if the critical point is approached from above and below, respectively. Using
Eq. (50) the susceptibility ratio

Fig. 12. The universal scaling function X̃ (x, 0, 1) of the universality class of tricritical directed per-
colation. The circle marks the condition X̃ (0, 1, 0) = βt/σt and reflects the accuracy of the performed
analysis. The inset displays the universal ratio X̃ (1, 0, x)/X̃ (−1, 0, x). The extrapolation (x → 0)
yields the value of the universal amplitude ratio X̃ (1, 0, 0)/X̃ (−1, 0, 0) = 0.35 ± 0.04. The obtained
value differs significantly from the corresponding values (dashed lines) of ordinary directed percolation
0.25 for D = 2 and 0.65 for D = 3,(35) respectively.
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χ (δp > 0, 0, h)

χ (δp < 0, 0, h)
= X̃(apδpλ, 0, ahhλσt )

X̃(−apδpλ, 0, ahhλσt )

∣∣∣∣∣
ap |δp|λ=1

= X̃(+1, 0, x)

X̃(−1, 0, x)
(56)

is clearly a universal quantity for all values of the scaling argument x =
ahh|apδp|−σt . In particular it equals the ratio aχ,+/aχ,− for vanishing field

aχ,+
aχ,−

= X̃ (+1, 0, 0)

X̃ (−1, 0, 0)
. (57)

For example, the mean field value of the universal ratio equals 1/2.
The ratio X̃(1, 0, x)/X̃(−1, 0, x) is shown in the inset of Fig. 12. The extrap-

olation to the tricritical point (x → 0) yields the value of the universal amplitude
ratio X̃(1, 0, 0)/X̃(−1, 0, 0) = 0.35 ± 0.05. This value differs significantly from
the corresponding values of ordinary DP for D = 2 and D = 3 (see Fig. 12 as well
as Table II). Worth mentioning, the universal susceptibility ratio exhibits a non-
monotonic behavior as a function of the scaling argument x. This non-monotonic
behavior is a characteristic feature of TDP and does not occur in ordinary DP (see
e.g. Fig. 30 of(3)).

So far simulation data are taken into account where the correlation length
is small compared to the system size L. Thus, the data presented above do not
suffer from finite-size effects, such as rounding and shifting of the anomalies. A
typical feature of finite-size effects in equilibrium is that a given system may pass
within the simulations from one phase to the other. This behavior is caused by
critical fluctuations which increase if one approaches the transition point. In case
of absorbing phase transitions the scenario is different. Approaching the transition
point, the (spatial) correlation length ξ⊥ increases. As soon as ξ⊥ is of the order
of L the system may pass to the absorbing state where it is trapped forever. As
pointed out in(41) an appropriate way to handle that problem is to incorporate a
conjugated field. Due to the conjugated field the system can not be trapped within
the absorbing state and steady state quantities are available for all values of the
control parameter.

As usual the system size L enters the scaling forms as an additional scaling
field, e.g.

ρa ∼ λ−βt R̃(λapathτpath, 0, ahhλσt , aL Lλ−ν⊥,t ) (58)

with the tricritical exponent ν⊥,t of the spatial correlation length. Using the above
scaling form it is possible to determine the correlation length exponent from data of
different system sizes. As well known from equilibrium, ratios of order parameter



214 L
..
ubeck

moments 〈ρk
a 〉 are more suited to estimate the correlation length exponent. For

example, the well-known Binder cumulant Q = 1 − 〈ρ4
a 〉/3〈ρ2

a 〉 was successfully
investigated in numerous works (see e.g.(42)) dealing with equilibrium as well as
non-equilibrium phase transitions. Furthermore, the value of the Binder cumulant
at the transition point is a universal quantity.

Unfortunately, the Binder cumulant diverges at the critical point of absorbing
phase transitions.(41,43) This behavior is caused by the vanishing steady state
fluctuations in the absorbing phase and reflects the different nature of the zero-
order parameter phase in equilibrium and in absorbing phase transitions. A ratio
that remains finite at criticality is given by(43)

U =
〈
ρ2

a

〉〈
ρ3

a

〉 − 〈ρa〉
〈
ρ2

a

〉2
〈ρa〉

〈
ρ4

a

〉 − 〈ρa〉
〈
ρ2

a

〉2 . (59)

This ratio is as useful for absorbing phase transitions as the Binder cumulant Q
is for equilibrium, i.e., its value at criticality characterizes the universality class.
Here, we investigated the ratio U close to the tricritical point (τ = 0 and g = 0).
Its scaling behavior obeys

U = Ũ (λτp,q , gp,qλ
φ, hλσt , Lλ−ν⊥,t )

∣∣∣
pt ,qt

= Ũ (0, 0, hλσt , Lλ−ν⊥,t )
∣∣∣

Lλ−ν⊥ ,t =1

= Ũ (0, 0, hLσt /ν⊥,t ). (60)

The ratio U is shown in Fig. 13 for p = 0.29931 and q = 0.90552. Convincing
data collapses are obtained for ν⊥,t = 0.59 ± 0.08. As can be seen the ratio tends
to a well defined value for h → 0 independent of the system size L. The obtained
value U = 0.84 ± 0.04 differs significantly from the corresponding values of
two-dimensional and three-dimensional ordinary DP (see Table II). Note that the
determination of U (h → 0) does not depend on the critical exponents σt and
ν⊥,t. But it is very sensitive to the determination of the critical point. Performing
simulations slightly away from the critical point the ratio U (h → 0) displays a
clear system size dependence (see inset of Fig. 13).

Thus we have determined the steady state scaling behavior of tricritical
directed percolation. The obtained values of the critical exponents as well as of
the universal amplitude ratios are listed in Table II. The accuracy of the estimated
exponents can be checked with the scaling law

γ ′
t = ν⊥,t D − 2βt. (61)

The determined two-dimensional values γ ′
t = 0.93 ± 0.06, ν⊥,t = 0.59 ± 0.08,

and βt = 0.14 ± 0.02 fulfill the above scaling law within the error bars. Fur-
thermore, the exponent of the spatial correlation function η⊥,t is related to the
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Fig. 13. Scaling plot of the ratio U (h, L) close to the tricritical point (p = 0.29931, q = 0.90552).
For vanishing field the ratio tends to the universal value U = 0.84 ± 0.04 which characterizes the
universality class. The dashed lines correspond to the values of U (h → 0) for two-dimensional and
three-dimensional directed percolation. The inset displays the ratio slightly away from the critical point
(p = 0.29934, q = 0.90557). The systematic deviations from a data collapse for small values of the
scaling argument reflect how sensible U depends on the determination of the critical point.

correlation length exponent and to the fluctuation exponent via the Fisher scaling
law

(2 − η⊥,t)ν⊥,t = γ ′
t , (62)

leading to η⊥,t = 0.42 ± 0.24. Another quantity of interest is the fractal dimension
Df of growing clusters at criticality. The fractal dimension is given by(3,44)

Df = D − βt

ν⊥,t
(63)

yielding Df = 1.76 ± 0.05. This value is larger than the corresponding values
of ordinary directed percolation (Df ,D=2 ≈ 1.20 and Df ,D=3 ≈ 1.60). A detailed
investigation of the fractal behavior of critical clusters is desirable. For example, a
determination of the lacunarity along the phase boundary would present a deeper
understanding of the cluster propagation (see e.g.(1,45)).

It is worth comparing our numerical results to those of corresponding field
theoretical analyses. Within a two-loop approach the critical exponents are given
in linear order of ε = Dc − D by(5,22,23)

βt = 1

2
− ε0.4580 . . . , (64)
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β ′
t = 1 + O(ε2) (65)

zt = 2 + ε0.0086 . . . , (66)

ν⊥,t = 1

2
+ ε0.0075 . . . , (67)

γt = 1 + O(ε2) (68)

γ ′
t = 1

2
+ ε0.4386 . . . , (69)

φ = 1

2
− ε0.0121 . . . . (70)

Here, β ′ denotes the critical exponent of the survival probability. According to the
ε-expansion one expects that the two-dimensional (ε = 1) values of the exponents
ν⊥,t, γt, and φ differ only slightly from their mean field values. Whereas strong de-
viations are predicted by the ε-expansion for βt and γ ′

t . This behavior is confirmed
by our numerical results. But one has to mention that the field theorically esti-
mated exponents differ significantly from the numerical values. For example, the
ε-expansion yields for the order parameter exponent βt = 0.042 . . .. This value
differs by 70% from the numerical value. Furthermore, the RG results predict
φ < 1/2 whereas the simulations clearly show φ > 1/2. Thus an ε-expansion of
higher-orders than O(ε) is desirable to describe the scaling behavior by a field
theoretical approach.

6. FIRST-ORDER PHASE TRANSITION

In this section we investigate the first-order regime of the modified contact
process. A general phenomenon associated with first-order transitions is the pres-
ence of hysteresis by cycling across the transition. In equilibrium, the hysteresis
is related to the effects of supercooling and superheating. Analogous effects occur
in case of the modified contact process. First we investigate the effect of super-
heating, i.e., we consider the order parameter within the active phase (ρa > 0)
while approaching the transition point (on heating in equilibrium). Decreasing the
parameter p for fixed q > qt the order parameter jumps at a certain point po from
a finite value to zero. This is shown in Fig. 14 for q = 0.97. Close to po = 0.221
the order parameter behaves discontinuously. This transition point po corresponds
to the limit of superheating. Note that in contrast to a continuous phase transition
the transition point po exhibits no systematic system size dependence.

The similar phenomenon of supercooling the zero-order parameter phase
is usually not accessible for absorbing phase transitions. Owing to the lack of
fluctuations for ρa = 0 the system can never escape the absorbing state by a
variation of p and q, respectively. To avoid that the system is trapped within the
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Fig. 14. The order parameter behavior within the first-order regime of the tricritical contact process
(TCP). The solid line is obtained from steady state measurements at zero field for various system sizes.
Within the simulations the control parameter p is slowly decreased until the absorbing state is reached.
The circles correspond to data which are obtained from finite-field simulations and slowly increasing
parameter p. Within the shadowed area the active and the absorbing phase coexist. The dashed line
marks the transition point pc obtained from a stability analysis of separated phases (see text). The inset
shows the field dependence of the order parameter (for growing p). The three dashed lines correspond
to three different field values (from h = 410−4 (top) to h = 310−5). As can be seen, a well defined
upper limit of the supercooled low density phase can be obtained.

absorbing state an external field h is applied. In that way it is possible to perform
steady state measurements of the order parameter on cooling, i.e., within in the
low density phase (ρa � 1) for increasing p. The resulting curves are shown in
the inset of Fig. 14. At a certain value pu(h) the order parameter jumps from
a low density value to a high density value. Note that the low density value of
ρa tends to zero for vanishing field. Furthermore, a well defined transition value
pu(h) exists for h → 0. The obtained value pu ≈ 0.223 corresponds to the limit
of supercooling.

In that way we have obtained from steady state measurements a small but
finite hysteresis, i.e., the two phases coexist between po < p < pu. Within the
active phase (ρa ≈ 0.8) the system is stable against small fluctuations until po

is reached from above. On the other hand the absorbing phase is stable against
external fluctuations, triggered by the conjugated field, until pu is approached from
below. Snapshots of the system within the supercooled and superheated state are
shown in Fig. 15.

Finally we address the question of the critical value pc(q) of the first-order
phase transitions. In equilibrium, the transition point is related to a thermodynam-
ical potential such as the free energy. At the critical temperature the free energy
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Fig. 15. Snapshots of the tricritical contact process within the regime of first-order phase transitions
(q = 0.97 and L = 256). The left figure shows a typical low density configuration (p = 0.223, super-
cooled phase). The seeds are triggered by an external field h = 10−4. The right figure displays a high
density configuration (p = 0.221, superheated phase). Here, order parameter fluctuations lead to seeds
of various sizes. In both cases the seeds are subcritical, i.e., they disappear after a certain lifetime.

of both phases are equal. Unfortunately, this definition can not be applied to the
considered non-equilibrium phase transition. An alternative way of defining the
first-order transition point is based on the behavior of moving interfaces which
separate both phases. In case of phase equilibrium the interface velocity is zero
whereas it is non-zero if one phase is favored by the dynamics.

According to that picture we have investigated the phase propagation within
the first-order regime. Initially the system contains a stripe (width L/2) of occupied
particles. All lattice site outside the stripe remains empty. Depending on p and q,
the system reaches after a transient either the absorbing phase or a steady state
of a homogeneous non-zero particle density. Snapshots are shown in Fig. 16. For
q = 0.97 and L = 256 we have performed more than 50 runs for each value of
p. The dynamics are attracted by the empty lattice in all runs for p ≤ 0.2215. On
the other hand the active phase is always approached for p ≥ 0.2219. For p =
0.2217 both phases appear with probability of roughly 1/2. Thus an interval exists
where both phases are favored by the dynamics. But we observe that this interval
decreases with increasing system size L, i.e., a well defined transition point pc(q)
exists in the thermodynamic limit. For q = 0.97 the value pc = 0.2217 is obtained
(see Fig. 14) yielding an asymmetric hysteresis between 0.221 < p < 0.223.

The above analysis of the first-order transition is performed for a fixed value
of q. Varying q the first-order transition line pc(q) as well as the borderlines of
supercooling pu(q) and superheating po(q) can be determined. In order to limit the
numerical effort we focus to the determination of po. Since the hysteresis is quite
narrow (�p/pc ≈ 0.009) pu presents a sufficient approximation of the transition
line. The corresponding values are plotted in Fig. 7. Remarkably, the first-order
line ends for q → 1 at a finite p value in contrast to the mean field phase diagram
(see Fig. 1).
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Fig. 16. Snapshots of the tricritical contact process close to the first-order transition for q = 0.97 and
L = 128 (periodic boundary conditions are applied). Starting from a stripe of particles the dynamics
is attracted either by the empty lattice (left, p = 0.22, the eventual occurring empty lattice is not
shown) or by a steady state of a homogeneous non-zero particle density (right, p = 0.24). The time t
is measured as the number of lattice updates.

7. CONCLUSION

In summary, we have considered a modification of the well established contact
process in order to study the process of tricritical directed percolation. Taking pair
reactions into account the modified process exhibits a non-trivial phase diagram
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containing a tricritical point. The tricritical point separates a line of second-order
phase transitions from a line of first-order phase transitions. The transition along
the second-order line belong to the universality class of directed percolation. Per-
forming a simple scaling analysis the tricritical point is determined with high
accuracy. This allows a detailed analysis of the tricritical scaling behavior within
the steady state. In particular, we have determined the tricritical exponents, uni-
versal scaling functions as well as universal amplitude ratios. The obtained values
of the critical exponents as well as the universal amplitude ratios are listed in Table
II. Additionally we have investigated the first-order regime. A hysteresis is found
from steady state measurements. Owing to effects of metastability supercooling
and superheating phenomena are observed. An analysis of the dynamical scaling
properties of tricritical directed percolation will be published elsewhere.
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